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Abstract
We study a system of equations with fractional derivatives, that arises in the
analysis of the lateral motion of an elastic column fixed at one end and loaded
by a concentrated follower force at the other end. We assume that the column
is positioned on a viscoelastic foundation described by a constitutive equation
of fractional derivative type. The stability boundary is determined. It is shown
that as in the case of an elastic (Winkler) type of foundation the stability
boundary remains the same as for the column without a foundation! Thus, with
the solution analysed here, the column exhibits the so-called Hermann–Smith
paradox.

PACS numbers: 46.70.De, 83.60.Bc

1. Introduction

Consider a rod of length L fixed at the end A and free at the other end B (see figure 1). Let S be
the arc-length of the rod axis so that S ∈ [0, L]. The rod is loaded by a concentrated follower
force, at the free end B. The rod is positioned on a viscoelastic foundation of the fractional
derivative type. Our goal in this paper is to formulate differential equations describing small
lateral motion of the rod and to examine the stability conditions, i.e., the conditions for which
the displacement of the rod remains finite.

For the case when the motion of the column is not restricted by a foundation (elastic
or viscoelastic) the column shown in figure 1 becomes the well-known Beck’s column. Our
analysis, that is our choice of the type of foundation, is motivated by the so-called Hermann–
Smith paradox. Namely, in [1] Smith and Herrman analysed the stability of a column loaded
by a follower force. It was assumed that the column is positioned on a Winkler-type elastic
foundation. They obtained intuitively unexpected behaviour of the critical load for flatter: the
critical load was independent of the foundation modulus! The frequency of vibration of the
beam increases with increasing foundation modulus, but the magnitude of the critical load
is not affected. In [2] the problem was reconsidered. It was argued in [2] that, as in the
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Figure 1. Coordinate system for Beck’s column on a viscoelastic foundation.

situation of the so-called Ziegler [3] paradox (small internal viscosity decreases the stability
boundary), here in the case of nonconservative load the paradox is: ‘a consequence of uncritical
application of the small-oscillation method’. In [2], the authors assumed that column is made
of linearly viscoelastic material and showed that the paradox disappears, that is the critical
load depends on the rigidity of the base. This led the authors of [2] to state that: ‘the elastic
idealization of deformable systems in nonconservative stability problems becomes physically
meaningless’. Recently, a summary of results on the stability of columns subjected to follower
loads has been given in [5]. The complete solution of the Hermann–Smith problem (allowing
variable stiffness of the foundation) for the case of an elastic column is presented in [6].

Our analysis will show that the Hermann–Smith paradox remains if one keeps the column
elastic but assumes that the foundation is viscoelastic. We shall show this for a particular
type of viscoelastic foundation that is described by a fractional derivative type of constitutive
equation. This model of viscoelastic foundation is used, for example, in [4] to model railpads
in a study of the stability of railway track.

2. The mathematical model

Let x̄–A–ȳ be the fixed rectangular Cartesian coordinate system with the origin at fixed point
b of the column. In what follows we consider only the plane motion of the column (the motion
in the x̄–A–ȳ-plane). Equations of motion for the column read (see [10])

∂H

∂S
= −qx

∂V

∂S
= −qy

∂M

∂S
= −V

∂x

∂S
+ H

∂y

∂S
− m (1)

where x and y are coordinates of an arbitrary point on the column axis in the deformed
state along the x̄- and ȳ-axes, respectively, H and V are components of the contact force
(representing the influence of the part of the column [0, S) on the part [S, l]) along the
x̄- and ȳ-axes, respectively and qx, qy and m are the intensities of the distributed forces per
unit length of the column axis along the x̄- and ȳ-axes and the intensity of the distributed
couple, respectively. We assume that the distributed forces come from the inertial force of the
column element and from the foundation. Therefore

qx = −ρ
∂2x

∂t2
qy = −ρ

∂2y

∂t2
− cF m = J

∂2ϑ

∂t2
(2)
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where ρ is the (line) density of the column, ϑ is the angle between the tangent to the column
axis and the x̄-axis, J is its rotary inertia coefficient, cF is the force (per unit length) of the
foundation and t is time. In what follows we shall, for simplicity, neglect the rotary inertia
term, i.e., we set J = 0. By using (1) and (2) we obtain

∂H

∂S
= ρ

∂2x

∂t2

∂V

∂S
= ρ

∂2y

∂t2
+ cF

∂M

∂S
= −V cos ϑ + H sin ϑ

∂x

∂S
= cos ϑ

∂y

∂S
= sin ϑ

∂ϑ

∂S
= M

EI

(3)

where EI is the bending stiffness of the column. The influence of the foundation is expressed
through F that we assume to be given as

F + τF D
(α)
t F = Ep

(
y + τyD

(α)
t y

)
(4)

with 0 < α < 1. In (3), we use D
(α)
t (·) to denote the αth derivative of a function (·) with

respect to time taken in Riemann–Liouville form as (see [7])

D
(α)
t g(t) = g(α) ≡ d

dt

1

�(1 − α)

∫ t

0

g(ξ) dξ

(t − ξ)α
= d

dt

1

�(1 − α)

∫ t

0

g(t − ξ) dξ

ξα
. (5)

The dimension of the constants τy and τF is [time]α . The constants Ep, τF and τy in (3)
are called instantaneous moduli of the foundation and the relaxation times, respectively. We
assume that the following inequality, as a consequence of the second law of thermodynamics,
is satisfied (see [8, 9])3

E > 0 τF > 0 τy > τF . (6)

Note that in the case α = 1 the foundation becomes a standard viscoelastic solid. The
boundary conditions for system (3) are

y(0, t) = 0 ϑ(0, t) = 0 H(L, t) = −F0 M(L, t) = 0
(7)

x(0, t) = 0 y(0, t) = 0 y(L, t) = 0

corresponding to the rod shown in figure 1.
The trivial solution to the system (3), (7) in which the rod axis is straight reads

H 0(S, t) = −F0 V 0(S, t) = 0 M0(S, t) = 0 x0(S, t) = S

y0(S, t) = 0 ϑ0(S, t) = 0 F 0(S, t) = 0.
(8)

The trivial solution to system (3), (7) in which the axis of the rod remains straight, reads

H 0(S, t) = −F0 V 0(S, t) = 0 M0(S, t) = 0

x0(S, t) = S y0(S, t) = 0 ϑ0(S, t) = 0.
(9)

Let H = H 0 + �H, . . . , ϑ = ϑ0 + �ϑ . By substituting this in (3), (7) and neglecting the
higher order terms in perturbations �H, . . . ,�ϑ , we obtain

EI
∂2�y

∂S4
+ F0

∂2�y

∂S2
+ ρ

∂2�y

∂t2
+ F = 0 (10)

subject to

�y(0, t) = 0
∂�y(0, t)

∂S
= 0

∂2�y(L, t)

∂S2
= 0

∂3�y(L, t)

∂S3
= 0. (11)

3 If one uses a rheological model shown under the rod in figure 1 then the constants in (5) are given as
E = E0Ed/(E0 + Ed), τy = (η/Ed)α, τF = τy(E/E0).
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We assume the initial conditions corresponding to (10) to be known but we do not specify this
now. Introducing the dimensionless quantities

λ = F0L
2

EI
τ = t√

ρ0l4

EI

u = �y

l
ξ = S

L
β = c

EpL4

EI

f = F

LEp

a = τF

(
EI

ρL4

)α/2

b = τy

(
EI

ρL4

)α/2
(12)

we obtain
∂4u

∂ξ 4
+ λ

∂2u

∂ξ 2
+

∂2u

∂τ 2
+ βf = 0 τ > 0 0 < ξ < 1 (13)

and

f + af (α) = u + bu(α) (14)

with 0 < α < 1. The boundary conditions are

u(0, τ ) = 0
∂u

∂ξ
(0, τ ) = 0

∂2u

∂ξ 2
(1, τ ) = 0

∂3u

∂ξ 3
(1, τ ) = 0 τ > 0. (15)

The restrictions (6)2,3 become

0 < a < b. (16)

Note that for the case a = b equation (14) leads to f = u and the foundation becomes elastic.

3. Solution of the system (13), (14)

3.1. Separation of variables

In this section we shall analyse properties of the solution to (13)–(15). Thus we consider

∂4u

∂ξ 4
+ λ

∂2u

∂ξ 2
+

∂2u

∂τ 2
+ βf = 0 τ > 0 0 < ξ < 1 f + af (α) = u + bu(α) (17)

where b > a > 0, λ > 0, β > 0 and 0 < α < 1, with

u(0, τ ) = 0
∂u

∂ξ
(0, τ ) = 0

∂2u

∂ξ 2
(1, τ ) = 0

∂3u

∂ξ 3
(1, τ ) = 0 τ > 0. (18)

We assume that solutions are of the form u(ξ, τ ) = Y (ξ)T (τ) and f (ξ, τ ) = X(ξ)V (τ).
Then (13), (14) reduce to

Y (4)(ξ)T (τ ) + λY (2)(ξ)T (τ ) + Y (ξ)T (2)(τ ) + βX(ξ)V (τ) = 0

X(ξ)V (τ) + aX(ξ)V (α)(τ ) = Y (ξ)T (τ) + bY (ξ)T (α)(τ ).
(19)

For the existence of (19)2 it is sufficient that

X(ξ) = AY(ξ) A(V (τ) + aV (α)(τ )) = T (τ) + bT (α)(τ ) (20)

with A ∈ R\{0}. Let us introduce in (17)1 a new constant ω2 ∈ R

Y (4)(ξ)T (τ ) + λY (2)(ξ)T (τ ) − ω2Y (ξ)T (τ)

+ ω2Y (ξ)T (τ) + Y (ξ)T (2)(τ ) + βAY(ξ)V (τ) = 0. (21)

Thus, if we find a solution to the system

X(ξ) = AY(ξ)

Y (4)(ξ) + λY (2)(ξ) − ω2Y (ξ) = 0

T (2)(τ ) + ω2T (τ) + βAV (τ) = 0

bT (α)(τ ) − aAV (α)(τ ) + T (τ) − AV (τ) = 0

(22)

we have a solution to (17) as well.
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3.2. Solutions to (22)2

We shall start with equation (22)2. This equation with boundary conditions (18) has the same
analytical form as the corresponding equation and boundary conditions for Beck’s column
without foundation (see [10]).

The solution to (22)2 is

Y (ξ) = C1 cosh r1ξ + C2 sinh r1ξ + C3 cos r2ξ + C4 sin r2ξ (23)

where Ci, i = 1, . . . , 4 are constants and

r1 =
√√

λ2 + 4ω2 − λ

2
r2 =

√√
λ2 + 4ω2 + λ

2
ω2 > 0. (24)

By using (23) in boundary conditions (18) leads to the connections between λ and ω2

given by

�(λ, ω2) = λ2 + 2ω2 + 2ω2 cosh r1 cos r2 + |ω|λ sinh r1 sin r2 = 0. (25)

When λ = 0 we have infinite number of positive real values of ω2 laying in pairs between(
π
2 + 2kπ

)2
and

(
3π
2 + 2kπ

)2
, k = 0, 1, . . . and satisfying �(λ, ω2) = 0 (cf [11]). In the

applications we are interested in the lowest values of λ for which the rod loses stability. Thus,
we consider the first two values of ω2. If λ is increased, then the two corresponding values
of ω2 approach each other until they meet at a certain value λ = λcr (λ ≈ 20.05, the critical
value).

As λ is increased beyond λcr, the value of ω2 becomes complex, with real part equal to
ω2 = ω2

cr ≈ 121.25 (cf [12]). More precisely, if λ ∈ (0, λcr + ε), with ε > 0 and small enough,
then the values of ω2 determined from (25) are either positive numbers or complex numbers
with the real parts close to ω2

cr.
Since the case ω2 > 0 has been treated, we consider (23) only for the case of ω2 complex.

Let ω2 = ω2
cr + iq; q ∈ R, q �= 0. The characteristic equation corresponding to (22)2 reads

r4 − λr2 − ω2 = 0.

This equation has four roots

r1,2,3,4 = ± 1√
2

√
−λ ±

√
λ2 + 4ω2. (26)

Let us remark that we have to repeat the operation of the extraction of the square root of
complex numbers twice. We analyse this operation. Let c + id be a complex number. Then

√
c + id = xj + iyj j = 1, 2 (27)

where

x1,2 = ± 1√
2

√√
c2 + d2 + c y1,2 = ± 1√

2

d√
d2

√√
c2 + d2 − c.

Remark. By combining (26) and (27) we conclude that there is always a root given by (26)
with a positive real part.
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3.3. Solutions to system (22)3, (22)4

Applying the Laplace transform (L(f )(s) = f̂ (s) = ∫ ∞
0 e−stf (t) dt) to the system (22)3,

(22)4 we have

(s2 + ω2)T̂ (s) + βAV̂ (s) = sT0 + T1

(bsα + 1)T̂ (s) − (aAsα + A)V̂ (s) = 0
(28)

where T0 = T (0) and T1 = T (1)(0).
Let �0(s),�1(s) and �2(s) denote

�0(s) =
∣∣∣∣s2 + ω2 βA

bsα + 1 −A(asα + 1)

∣∣∣∣
= −Aa

[(
sα +

1

a

) (
s2 +

aω2 + bβ

a

)
+

1

a

(
1 − b

a
β

)]
= −A[asα+2 + s2 + (aω2 + βb)sα + ω2 + β]

�1(s) =
∣∣∣∣sT0 + T1 βA

0 −A(asα + 1)

∣∣∣∣
(29)

= −Aa(T0s + T1)

(
sα +

1

a

)

�2(s) =
∣∣∣∣s2 + ω2 sT0 + T1

bsα + 1 0

∣∣∣∣
= −b(T0s + T1)

(
sα +

1

b

)

= −b(T0s + T1)

(
sα +

1

a

)
−

(
1 − b

a

)
(T0s + T1).

The solution to the system (28) is

T̂ (s) = �1(s)

�0(s)
=

(
sα + 1

a

)
(T0s + T1)(

sα + 1
a

)(
s2 + aω2 + bβ

a

)
+ 1

a

(
1 − b

a
β
)

V̂ (s) = �2(s)

�0(s)
= b

(
sα + 1

a

)
(T0s + T1) +

(
1 − b

a

)
(T0s + T1)

Aa
[(

sα + 1
a

)(
s2 + aω2 + bβ

a

)
+ 1

a

(
1 − b

a
β
)] .

(30)

We introduce new notation p = aω2 + bβ

a
and 1

a

(
1 − b

a
β
) = c and we consider the expression

−Aa
�0(s)

. Let us remark that c is a real number and p can be a positive real number or a complex

number
(
p = ω2

cr + βb

a
+ iq

)
which depends on ω2,

−Aa

�0(s)
= 1(

sα + 1
a

)
(s2 + p) + c

= 1(
sα + 1

a

)
(s2 + p)

(
1 +

∞∑
ν=1

(−c)ν

(
1

sα + 1
a

)ν (
1

s2 + p

)ν
)

.

(31)

We have proved (cf [19]) that there is a continuous function φ(t), t � 0 such that

(Lφ)(s) =
∞∑

ν=1

(−c)ν

(
1

sα + 1
a

)ν (
1

s2 + p

)ν

(32)

and

φ(t) =
∞∑

ν=1

(−c)ν
(
L−1

(
1

s2 + p

)
∗ w

)∗ν

(t) (33)
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where ‘∗’ denotes convolution ((f ∗ g) (t) = ∫ t

0 f (τ)g(t − τ) dτ) and F ∗ν means ν-fold
convolution of F. Also L−1

(
1

s2 + p

)
one can find in any tables for the Laplace transform (cf

(37)) and

w(t) = L−1

(
1

sα + 1
a

)
(t) = αtα−1E(1)

α (z) z = −
(

1

a
tα

)
t � 0 (34)

where Eα(z) is the Mittag–Leffler function (cf [15]).
By (28) and (30) one can see that two functions f̂ (s) = (

sα + 1
a

) −Aa
�0(s)

and sf̂ (s) have the
basic role in the process of determining T (t) and V (t). Therefore we first consider these two
functions. Thus,

f̂ (s) =
(

sα +
1

a

) −Aa

�0(s)
= 1

s2 + p
(1 + φ̂(s)) (35)

and

f (t) = L−1(f̂ (s))(t) = L−1

(
1

s2 + p

)
(t) +

(
L−1

(
1

s2 + p

)
∗ φ

)
(t) (36)

where

L−1

(
1

s2 + p

)
(t) = 1

p

ei
√

pt − ei
√

pt

2i
. (37)

In all three cases f (0) = 0. Consequently sf̂ (s) = L(f (1))(s), i.e.

f (1)(t) = L−1

(
s

s2 + p

)
(t) +

(
L−1

(
s

s2 + p

)
∗ φ

)
(t) (38)

where

L−1

(
s

s2 + p

)
= 1√

p

ei
√

pt + ei
√

pt

2
. (39)

The solution to (22)3, (22)4 has the form

T (t) = T0f
(1)(t) + T1f (t)

(40)

V (t) = b

aA
T0f

(1) +
b

aA
T1f (t) +

1

aA

(
1 − b

a

)
[T0(w ∗ f (1))(t) + T1(w ∗ f )(t)]

where f, f (1) and w have been given by (36), (38) and (34), respectively.

4. Properties of the solution to (22)3, (22)4

4.1. Solution (40) is a classical one

We shall first prove that f ∈ C3([0,∞)). By (38) it follows that f ∈ C1([0,∞)). Let us
consider f (2)(t), t � 0. Since L−1

(
s

s2 + p

)
(t) is a smooth function, we have to analyse only

d

dt

(
L−1

(
s

s2 + p

)
∗ φ

)
(t) = d

dt

∫ t

0
L−1

(
s

s2 + p

)
(t − τ)φ(τ) dτ

=
(
L−1

(
s

s2 + p

)
(0)φ(t)

)
+

∫ t

0

(
L−1

(
s

s2 + p

))(1)

t

(t − τ)φ(τ) dτ. (41)

We know that w(t) is a smooth function on (0,∞) and w(t) = O(tα−1), t → 0. Then φ(t)

given by (33) has the property that |φ(i)(t)| � O(tα), t → 0, i = 0, 1. Consequently, (41)
gives f ∈ C3([0,∞)).
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Now it is easily seen that T ∈ C2([0,∞)) and that V (α)(t) ∈ C0([0,∞)). Solution (40)
is a classical solution. Also T (i), i = 0, 1, 2, and V, V (α) are J functions (cf [14]). For
the definition of J functions see [14], volume I, p 29. For the J functions there exists the
Laplace transform. This shows that the use of the Laplace transform was correct in the present
situation.

4.2. Asymptotic behaviour of the solution (22)3, (22)4

In section 3.2 we have seen that if the solution Y (ξ), given by (23), satisfies boundary
conditions (18), then ω2 is a positive real number or a complex number. Therefore, we discuss
the asymptotic behaviour of the functions T (t) and V (t) in (40) only for these values of ω2.
We know that this asymptotic behaviour depends on the real parts of zeros of �0(s). But for
the discussion of asymptotic behaviour we can use the analytical form of T (t) and V (t) too.
We shall combine these two possibilities.

Let us start with the case ω2 > 0. Many authors studied zeros of a complex function
using different approaches (see [16–18]). In [19] we used quite elementary analysis. These
results are applicable to (40) as well. They give for (40) the following.

Let us consider

− 1

A
�0(s) = asα+2 + s2 + (aω2 + βb)sα + ω2 + β. (42)

The coefficient aω2 + bβ can be written in the form

aω2 + bβ = a(ω2 + β) + β(b − a). (43)

Since β > 0 and b > a, it follows that aω2 + bβ > 0. Also by (43) we have

a(ω2 + β) + β(b − a)

a
= ω2 + β.

In [18], p 518 it was proved that in this case �0(s) has no zeros neither real and positive nor
complex with positive real part. Consequently, if ω2 > 0, then the solutions given by (40) are
stable. We can arrive at the same conclusion by (37), (39) because in this case p > 0.

We shall now discuss the asymptotic behaviour of solutions (40) in the case when ω2 is
a complex number, ω2 = ω2

cr + iq, q ∈ R, q �= 0. We first transform (43) to another form,
so that

sα+2 +
1

a
s2 +

(
ω2 + β

b

a

)
sα +

ω2 + β

a
= 0

is equivalent to(
s2 + ω2 + β

b

a

) (
sα +

1

a

)
= β

a2
(b − a). (44)

If there existed a ρ0 � 0 such that(
ρ2

0 + ω2 + β
b

a

)(
ρα

0 +
1

a

)
= β

a2
(b − a) (45)

(ρα
0 is the principal branch), then we would have that the product in (45) is a positive real

number, but one factor is a complex number (which is not real) and other factor is a real
number. Since this is not possible, it follows that there is no solution ρ0 � 0 of (44) and
solutions (40) cannot exponentially diverge. This follows also from (37), (39) as well, because
p cannot be negative.
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By (27) for ω2 = ω2
cr + iq we have

√
p = ± 1√

2

√√√√√(
ω2

cr + β
b

a

)2

+ q2 +

(
ω2

cr + β
b

a

)

± i√
2

q√
q2

√√√√√(
ω2

cr + β
b

a

)2

+ q2 −
(

ω2
cr + β

b

a

)
.

By using (37), (39) we conclude that in this case we have oscillations with increasing amplitude,
i.e. a flutter (cf remark in section 3.2).

4.3. Approximation of series (33)

There are different inversion formulae for the Laplace transform (cf [14]). We made good use
of the series (32). Consequently in solution (40) we have series (33). We shall estimate the
error when we take the sum

m∑
ν=1

(−c)ν
(
L−1

(
1

s2 + p

)
∗ w

)∗ν

(t) 0 � t � t0

instead of series (33) but only if p > 0, because if we have the stability of solution to (40),
then p > 0, p = (aω2 + bβ)/a = ω2 + β + β

(
b
a

− 1
)
, i.e. ω2 > 0. It is easily seen (cf [19],

p 511) that for any ν ∈ N and 0 � t � t0, p > 0∣∣∣∣
(
L−1

(
1

s2 + p

)
∗ w

)∗ν

(t)

∣∣∣∣ � Cν(t0)
t (α+1)ν−1

�(ν(α + 1))

where �(x) is the Euler gamma function. Then with C0 = cC(t0) we have∣∣∣∣∣
∞∑

ν=m+1

(−c)ν
(
L−1

(
1

s2 + p

)
∗ w

)∗ν

(t)

∣∣∣∣∣
�

∞∑
ν=m+1

Cν
0

t (α+1)ν−1

�(ν(α + 1))

�
∞∑

k=1

Ck+m
0 t (α+1)(k+m)−1

�(k(α + 1) + m(α + 1))

� Cm
0 tm(α+1)−1

∞∑
k=1

(C0t
α+1)k

�(k(α + 1) + m(α + 1))

� Cm
0 tm(α+1)−1C0t

α+1
∞∑

n=0

(C0t
α+1)n

�(n(α + 1) + (m + 1)(α + 1))

� Cm+1
0 t (m+1)(α+1)−1

∞∑
n=0

(C0t
α+1)n

�(n(α + 1) + (m + 1)(α + 1))

� Cm+1
0 t (m+1)(α+1)−1Eα+1,(m+1)(α+1) (C0t

α+1) (46)

where Eu,v is a function similar to Mittag–Leffler’s function (cf [15], p 210). Properties of the
function Eu,v(z), which can be useful in our case one can find in [15], p 210.

Evidently estimate (46) is interesting before all in the neighbourhood of t = 0.
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5. Interpretation of the results and conclusion

We summarize now the results obtained in this paper in the context of a physical model, i.e.,
Beck’s column on a viscoelastic foundation.

(1) The time evolution of the system (13)–(15) is determined by the solution of the following
system of differential equations containing fractional derivatives (see (22)2,3),

T (2)(τ ) + ω2T (τ) + βAV (τ) = 0

bT (α)(τ ) − aAV (α)(τ ) + T (τ) − AV (τ) = 0
(47)

where 0 < a < b, β > 0 and A ∈ R\{0}. For (47) the initial conditions should be
prescribed and we consider them arbitrary. For the case of a column on a viscoelastic
foundation, as for the case of a column without foundation, for given λ in (13) the
corresponding ω2 is determined from (25). This relation leads to ω2 > 0 if 0 � λ �
20.0509 and ω2 = ω2

cr + iq, with ω2
cr ≈ 121.25 (cf [12]) if λ ∈ (20.0599, 20.0599 + ε)

with ε > 0 small enough.
In the first case, that is for 0 � λ � 20.0509, we have stability of the rod, i.e., the

solution to (47) is bounded. In the second case the solution to (47) becomes unstable
with both T (t) and V (t) representing oscillations with increasing amplitude (there is no
exponential type of instability).

(2) The stability results just stated show that the viscoelastic foundation of fractional derivative
type, for Beck’s column, does not increase the stability bound. This result, often called
the Hermann–Smith paradox, was known to hold for the Winkler type of foundation
(see [1]). Here we show that it holds for a viscoelastic foundation of fractional derivative
type too.
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